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SUMMARY

A Lagrangian level-set method to solve incompressible two-dimensional two-�uid �ows is presented.
The Navier–Stokes equations are discretized by a Galerkin �nite element method. A projection method
is employed to decouple the system of non-linear equations. The interface between �uids is represented
by the zero level set of a function � plus additional marker points of the computational mesh. In
the standard Eulerian level-set method, this function is advected through the domain by solving a
pure advection equation. To reduce mass conservation errors that can arise from this step, our method
employs a Lagrangian technique which moves the nodes of the �nite element mesh, and consequently,
the information stored in each node. The quality of the mesh is controlled by a remeshing procedure,
avoiding bad triangles by �ipping edges, inserting or removing vertices from the triangulation. Results
of numerical simulations are presented, illustrating the improvements in mass conservation and accuracy
of this new methodology. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Simulations of multi-�uid �ows are known to be di�cult to perform due to discontinuities
at the fronts separating the di�erent �uids. A number of methods have been developed to
approximate the fronts. For �xed meshes, front-tracking and front-capturing methods [1] are
the most used. In front-tracking methods, the fronts are represented by computational elements,
usually a mesh of connected marker particles, moving through the domain with the �uid
velocity �eld. A number of papers dealing with front-tracking methods can be found in
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the literature (e.g. References [1, 2]). The front-tracking methodology is more accurate than
front-capturing, introducing very small mass variation of the �uids involved in the simulation.
However, its implementation is more di�cult, in particular when the �ows undergo topological
changes, like either coalescence or splitting of the interfaces.
On the other hand, front-capturing methods represent the interfaces by a region of high

gradient variation, where the fronts are reconstructed at each time-step. Among these, the
level-set method, introduced by Osher and Sethian [3], has acquired popularity because of
its algorithmic simplicity. In this method, the fronts are represented by the zero level set
of a function �, that is advected by solving �t + u·∇�=0, where u is the velocity �eld.
Most numerical procedures designed to solve this equation will introduce arti�cial di�usion
leading to pronounced mass conservation errors. Improvements for the mass conservation of
the level-set method can also be found in the literature (e.g. Reference [4]).
Hybrid methods were also developed, trying to combine the precision of front-tracking with

the simplicity of front-capturing. Tornberg and Engquist [5] developed an hybrid method called
Segment Projection method, where good accuracy and mass conservation were achieved while
still dealing with topological changes. More recently, a work published by Sousa et al. [6]
presents a front-tracking=front-capturing technique, which is basically a �nite-di�erence front-
tracking technique which allows automatic coalescence at a grid level, but not interface split-
ting.
With the increase of the available computational resources, moving-mesh techniques are

becoming popular and gaining interest from many researchers. Although this is still a new
methodology nowadays, we can �nd successful moving-mesh and Lagrangian methods
developed in early 1980s and 1990s. For instance, Ryskin and Leal describe in Reference [7]
a �nite di�erence technique where the mesh is adapted to the deformation of the front, com-
puted in a boundary-�tted co-ordinate system. This technique is applied for the computation
of deformable particles, but resolving only the continuous �uid. Ogũz and Prosperetti [8]
developed a Lagrangian boundary integral method to predict the bubble entrainment by the
impact of drops on liquid surfaces, resolving only the free-boundary. More recently, Perot and
Nallapati [9] designed a moving-mesh technique to solve free-surface �ows, where springs
are used to control the quality of the unstructured mesh.
In this work, we propose a new moving-mesh methodology, which is a Lagrangian

level-set method for two-�uid �ow simulations. It uses the same pseudo-concentration
function � to represent the fronts, but its advection is performed by moving all the ver-
tices of the mesh by the velocity �eld, where the values of � are stored. With this approach,
the mass conservation of the level-set method is improved, while still keeping the simplicity
of the interface representation. However, as the mesh is moved, elements can be distorted,
degrading the �nite element solution. This requires a mesh control procedure to ensure the
good quality of the elements.

2. FORMULATION

The conservation equations modelling incompressible two-�uid �ows are the equation of
motion

D(�u)
Dt

+∇p= 1
Re

∇·[�(∇u+∇uT)] + �
Fr2

g+
1
We
f (1)
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and the equation of continuity ∇·u=0, where u is the velocity �eld, p is the pressure �eld, �
and � are the discontinuous viscosity and density, g represents the gravitational acceleration
�eld and f is a source term representing the surface tension. In this equation, Re, Fr and
We are the non-dimensional Reynolds, Froude and Weber numbers. Using the CSF model
according to Reference [10], the source term can be written as f =���n, where � is the
surface tension coe�cient, � is the curvature and n is the surface unit outward normal vector.
Additionally, � is the Dirac delta function with support on the interface. In the Lagrangian
approach the material derivative is approximated by a discretized form of D(�u)=Dt computed
in a reference frame moving with the material particles. Since the convective term does not
explicitly appear in the Lagrangian formulation, high Reynolds numbers are allowed without
any special stabilization technique. If �i represents the domain of �uid i, then �=�(x)=�i
if x∈�i and �=�(x)=�i if x∈�i, where �i and �i are the properties of �uid i.

3. NUMERICAL METHOD

The numerical procedure implemented to solve the conservation equations is based on the
Projection-1 method, initially proposed by Chorin [11], and formalized by Gresho and his
co-workers [12, 13]. The general idea is to split the velocity �eld in two �elds, one divergence-
free and another rotational-free. This procedure decouples the acceleration and pressure �elds.
Thus, instead of solving one large system, we solve two smaller decoupled systems of equa-
tions, reducing the time of computation.
The method presented below is the Chorin’s Projection-1 method, with the treatment of the

boundary conditions given by Gresho [12]. The method was adapted for the two-�uid �ow
case, following the ideas stated by Sousa et al. [6]. Consider the conservation equations (1),
with initial condition u(x; 0)= u0(x) in � with ∇·u0 = 0 in �. Let un= u(x; t) be the velocity
�eld computed in the time step t, with ∇·un=0. Given un, the procedure to �nd un+1 =
u(x; t +�t) in the next time step t +�t is given by the following algorithm:

1. Solve ũn+1, with ũn= un, from D(�ũ)=Dt=(1=Re)∇·{�(∇ũ+∇ũT)} + (�=Fr2)g+
(���=We)n;

2. solve ’ from ∇·�−1∇’=∇·ũn+1;
3. compute un+1 = ũn+1 − �−1∇’;
4. update the time step and continue until the �nal time or convergence are reached.

4. DISCRETIZATION

The domain is discretized by an unstructured triangular mesh which is initially a Delaunay
triangulation. The shape functions interpolating the discrete approximations are assumed to be
linear, and each triangle of the mesh has at most three degrees of freedom for the veloci-
ties and for the pressure. Considering the following spaces: V= {v∈L2(�) : vi ∈H 1(�);∀i}
and P= {q∈L2(�) : ∫

� q d�=0}, where H 1(�) is a Sobolev space, and the sub-spaces
Vu� = {v∈V : v= u� em �1} and V0= {v∈V : v= 0 em �1}, the weak formulation of the
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problem can be written as: �nd u(x; t)∈Vu� and p(x; t)∈P such that

m
(
D(�u)
Dt

;w
)

− c(p;w) + k
( �
Re
; u;w

)
−m

( �
Fr2

g;w
)

− fI
( �
We
;w

)
=0 (2)

c(q; u)=0 (3)

for all w∈V0, q∈P. The functionals in (2) are from the integration of the material derivative
(m), pressure gradient (c), viscous term (k), and interfacial force term (fI), respectively.
The discretization of (2)–(3) is made using linear shape functions and Galerkin weighting

functions. Integrating over the triangular elements results in an ODE system, which is solved
using the projection method described above. The time derivatives are integrated by an implicit
scheme. As in the Lagrangian formulation the non-linear terms do not appear, the matrices are
symmetric positive de�nite and thus the conjugate gradient method can be applied to solve
the linear systems.

5. LEVEL-SET

The technique used to capture the interface is a level-set method [14, 15], in which the front is
represented by the zero level set of a pseudo-concentration function � : R2 →R. In symbols,
I = {x : �(x; t)=0}. With this formulation, the unit normal vector and the curvature of the
interface I can be easily calculated by the expressions: n=∇�=|∇�| and �=∇·(∇�=|∇�|).
This function is advected through the domain by the velocity �eld. As the mesh is moved

with the �uid particles and the values of � are stored in each vertex of the mesh, there is
no need to solve any additional equation for the evolution of �. We use additional vertices
and edges of the computational mesh to explicitly represent the interface, so that the exact
discrete position of the interface is known. Figure 1 shows the representation of the interface
in our method compared to standard Eulerian approach.
To avoid problems with discontinuous properties at the interface, we use a regularized

Heaviside function to compute � and �. For instance, the viscosity is computed as
�=�0 +(�1−�0)H�(�), where H�(�)= 1

2 +
1
32 (45�−50�3 +21�5), for |�|6�, is the smoothed

Heaviside function extracted from Reference [15]. The parameter � is usually kept very small
to avoid spreading the interface over too many cells.
The level-set function � is initialized as a signed distance function, which means that

‖∇�‖=1. As it is advected through the domain, it does not necessarily correspond to a
distance function any more. Keeping � as a distance function is important to ensure that the
interface has �nite thickness. This is achieved by the reinitialization of �. Periodically,

Zero level set Zero level set

Figure 1. Interface representation: standard level-set (left); and the Lagrangian approach (right).
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the new values of � are computed as �̃(x)= miny∈ I |x−y|·sgn(�). This operation is not done
at every time-step and it costs ND ×NI computations of two-dimensional distances, where NI is
the number of interface vertices and ND is the number of the remaining vertices in the mesh.
This is an acceptable value since the interface has few points compared to the whole domain.
Also, the requirement of keeping � a distance function is only important in the vicinity of
the interface which drastically reduces the number of distance computations.

6. MESH CONTROL PROCEDURE

As the mesh is moved, bad elements can appear, compromising the �nite element
approximation. To avoid this problem, a mesh control procedure is employed. Elements are
tested by their aspect ratio, which is measured by the ratio between the radius of the circum-
scribing circle and the length of the shortest edge of the triangle. A triangle can be classi�ed
as bad if its ratio is greater than �, for some �¿

√
3=3. In that case, it has to be removed

from the triangulation.
A bad triangle can be also classi�ed in two types: a cap triangle possesses a large

circumscribing circle radius comparing to its edges. It can be removed by �ipping the largest
edge, inserting a new point in the middle of the largest edge or deleting the vertex which
possesses the largest angle; a thin triangle possesses a very small edge comparing to the other
edges and to the circumscribing circle radius. It can be removed from the triangulation by
deleting the shortest edge or inserting a point in the largest edge.
The insertion, deletion and �ipping operations are also controlled by additional parameters,

like the maximum and minimum sizes for the edges. They are also restricted by the interface.
Insertion and deletion of interface vertices are allowed to keep it smooth. Flippings of interface
edges are not allowed to avoid loss of information at the interface. Insertion and, in particular,
deletion work in the sense of keeping the mesh regular. The singularity of the mesh, as
interfaces begin to merge or breakup, is limited by the choice of the smallest edge size.
If a very accurate description of the merge or break-up process is desired, it su�ces to
prescribe a very small value for the shortest allowable edge, but then the computational cost
will be accordingly larger. In this sense, insertion and deletion ameliorate the singularity of
the geometry, and they provide a convenient approach to select the relevant scales for the
analysis.
This procedure is applied periodically over the entire mesh. The vertices and edges are

inserted into and removed from the mesh such that the resulting triangulation is Delaunay in
the vicinity of the changed region. Although the entire mesh is not Delaunay, this ensures
that the local triangulation is optimal.

7. NUMERICAL RESULTS

In this section, results for the static bubble and rising bubble computations are presented,
demonstrating the advantages of this method in terms of mass conservation and accuracy
compared to standard Eulerian level-set method.
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Table I. Comparison for the static bubble simulation.

Analytic Eulerian level-set Coarse mesh Fine mesh

Elements — 3032 2056 5910
�p 2 2.030 2.014 2.010
Error — 1.5% 0.7% 0.5%

7.1. Static bubble

A static bubble immersed into another �uid is simulated to verify the surface tension
calculation and measure the in�uence of parasitic currents in the �ow. This problem was
simulated in a 2× 2 domain discretized by 2056 elements in the coarse mesh and by 5910
elements in the �ne mesh. Table I shows the comparison of the results for the pressure jump
between our technique and standard level-set representation of the interface. We compute the
pressure jump at the interface as the di�erence between the pressures inside and outside the
bubble. In symbols, �p=p0 − p1, where p0 is the pressure inside and p1 is the pressure
outside the bubble. The analytical pressure jump at the interface is known to be �p∗=�=R,
where R is the radius of the bubble. In Table I we show the error as the percentage deviation
of the calculated values from analytical value.
The comparison shows better results for our method because the interface is explicitly

represented by nodes and edges in the computational mesh, giving a more accurate position
of the interface. The parasitic currents are O(10−4) in the �ne mesh, which is an acceptable
value for our simulations.

7.2. Rising bubble

The rising of a single bubble immersed in a heavier �uid is simulated. The simulation was
performed in a 3× 6 domain initially discretized by 2438 elements in the coarse mesh and
4246 elements in the �ne mesh. The non-dimensional parameters for this problem are the
Morton and E�otv�os numbers, given by M =7:5× 10−5 and Eo=2:5, respectively. The bubble
diameter is D=1 and the bubble is about 2 times lighter and less viscous than the surrounding
�uid. Figure 2 shows the mesh con�guration at the non-dimensional times t=0, 8 and 16,
the streamlines and u-velocity contours at t=16.
The volume of the bubble was computed and compared to the classic Eulerian level-set

method. In two dimensions, this volume is calculated as Vb =
∫
V dv. In the classical level-set

representation, the position of the interface is not well known, so linear interpolations are
used to compute the bubble volume. In our method, the position of the interface is de�ned
by edges and vertices of the triangulation, so that the bubble volume is computed directly
by summing the volumes of all the interior triangles of the bubble. In this case, our method
obtained an error around 1:4%, while the classical level-set formulation gives an error about
7% in mass conservation.
The rising Reynolds number for the bubble was computed for both coarse and �ne mesh,

giving Re≈ 4:7, but a better approximation was obtained for the �ne mesh. The percentage
of bubble volume variation from the initially cylindrical bubble was computed as 3% for the
coarse mesh and 1.4% for the �ne mesh. Part of this error can be associated to the removal
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Figure 2. Rising of a single bubble, from left to right: initial mesh, mesh at t=8, mesh at t=16,
stream lines, and u-velocity contours.

of interface vertices, which is not a mass conserving procedure, but it is necessary to keep
the good quality of the mesh.
An estimate of the numerical rate of convergence of the method for the problem of the

single rising bubble can be obtained based on the bubble mass conservation. Considering
the bubble mass (volume) conservation error for two di�erent meshes, the numerical rate
of convergence can be estimated by n= log(E1=E2)= log(h1=h2) where E1, E2, h1 and h2 are
the mass conservation errors and representative edge sizes of meshes 1 and 2. Employing
data obtained from this simulation, we obtain n=2:04, which is consistent with the expected
second-order accuracy of the method.

7.3. Bubble coalescence

To show that the method can easily deal with topological changes at the interface,
we simulated the coalescence of two rising bubbles. The parameters for this problem are
the same as the previous simulation. As two interfaces get closer to each other, at a distance
of one element, coalescence takes place. We simply check for the existence of elements in the
surrounding �uid that have three interface vertices, and change the material of this element.
Removal of vertices that no longer belongs to the interface is also performed in order to
avoid singularities. Figure 3 illustrates the coalescence of two bubbles. Details of the mesh
con�guration before and after coalescence can also be seen in this �gure.

8. CONCLUSION

The method presented in this paper is a Lagrangian approach for the level-set method, which
produces better mass conservation properties while still easily dealing with topological changes
of the fronts. The code implements a moving �nite element unstructured mesh as well as a
control procedure to avoid bad elements in the mesh. The conservation equations are solved
by a projection method to decouple the acceleration and pressure.
Results show good mass conservation and accuracy when compared with standard Eulerian

level-set approach. The static bubble simulation was performed to validate the surface tension

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:1393–1401



1400 F. S. SOUSA AND N. MANGIAVACCHI

Figure 3. Coalescence of two bubbles, from left to right: interface at times t=0; t=7:5; and t=12:4;
details of the mesh con�guration before and after coalescence.

calculation and to compute the parasitic currents that may appear in the �ow. The results show
better accuracy than the Eulerian approach, and small values for the parasitic currents. The
results for a rising bubble are also presented, where the mass conservation errors are found
to be much smaller than the standard Eulerian approach. A bubble coalescence simulation
was also carried out, showing that the method can easily deal with topological changes at
the fronts. The presented results are for low Reynolds number �ows. The performance of the
method for high Reynolds number �ows will be addressed in the future.
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